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We discuss the parity-conserved 6"(x) interaction between pair dipoles. It is 
shown that the case of  zero coupling constant c = 0 is markedly different from 
that of  c ~ 0. This is an un-perturbation effect. 

Two- and many-body problems with 6'(x) (first derivation of the 
Dirac g-function) interaction are of great interest (Gesztesy and Holden, 
1987; Seba, 1988). Pang et al. (1990) encountered this problem when 
studying the quantized Davey-Stewardson I system. Recently Zhao (1992) 
gave an interesting solution to the Schr6dinger equation with two-body 
6'(x) interaction. However, in one dimension, parity cannot be conserved 
in this system. So such a Schr6dinger equation cannot properly describe the 
behavior of bosons or fermions in one dimension. We therefore consider 
the parity-conserved 6"(x) potential. 

As is well known, the ~'(x) interaction is an idealization of forces 
within a point dipole, 

~'(x)=limlI6(x+2)-~(x~o-a - 2 ) ]  (1) 

whereas ~"(x) is similar to that between dipoles, 

6"(x) = lim 1 [6(x + a) - 26(x) + 6(x - a)] (2) 
a ~ 0  a 

It is possible that this is the force between electron pairs (or vacancy pairs) 
in extreme conditions such as low temperature. This model is therefore 
worthy of attention. 
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First ,  we investigate the two-body Schr6dinger equation, 

- ~ + ~ O(x~, x21 + 4c~"(x, - x2)O(x~, x2) = E~,(x,, x2) (3) 

which can be reduced to a one-body problem in mass-centered coordinates 
(MCC), 

d 2 
dx  2 0 ( x )  + 4c6"(x) lp(x)  = EO(x)  (4) 

As usual, we require O(x) to be continuous at x = 0. Integrating equation 
(4) from 0-  to 0 +, we obtain ~O(0 +) - ~ ( 0 - ) =  4cO"(0), where ~,"(0) is 
defined as [~b"(0 +) + 0"(0-) ] /2 .  So equation (4) can be replaced by 

d z 
d x  2 O(x)  = E~O(x) when x # 0 

4,(o +) = q,(0-)  = q,(0) (5) 

~k'(0 +) - ~ ' ( 0 - )  = 4c~k"(0) 

For  bosons we have the symmetric solution 

~ ( x )  = O(x ) (A le  ikx + A2 e - l kx )  + O( - x ) ( A 2 e  ikx + A l e  -ik~) 

where k 2 = E > 0, and k = (k2 - k l ) / 2  is the effective momentum in MCC. 
O(x) = 0 ,  1/2, 1 as x < ,  = , > 0 .  From (5) we have 

2ik(A~ - A2) = - 4 c k 2 ( A ~  + A2) 

o r  

A2 _ 1 - 2 ick  1 - ic(k2 - k l  ) 
A 1 1 + 2 ick  - 1 + ic(k2 - k l  ) = e io~k2 - k l~ (6)  

where O(x) = -- 2 t an -  1 (cx) .  

It is not difficult to obtain a bound-state solution when c < O, 

~ ( x )  = elxl/2c (7) 

1 
E =  -~-7c2 < 0 

Second,  we use the Bethe Ansatz (Shastry et  al., 1985) to analyze the 
many-body problem. The N-particle wave function can be written as 

~/(XI,...,XN)~---2 ~IpI...pN(XI,...,XN)O(XpI <' ' '<XpN ) (8 )  
P 
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where P = {Pl . . . . .  PN} is a perturbation of { 1 , . . . ,  N}. For bosons we 
have 

~//I,...,N(X2 . . . . .  XN' X l )  = ~//2,...,N,I (Xl . . . . .  XN), etc. (9) 

Define 

~k,,...,N(X, . . . .  , XN) = ~, Ap exp(ikp,Xl + ' "  + ikpuxu) (10) 
P 

We can obtain other terms in (8). Furthermore, if the permutation P 
corresponds to momenta {kp, . . . .  , k?N } = { . . . ,  k, k ' , . . . }  and P '  corre- 
sponds to {kpi . . . .  , kp~} = { . . . ,  k ' ,  k . . . .  }, applying the boundary condi- 
tion, we have the same result as in the two-particle case, 

An?" = eiO{k'- k) (11) 
Ae 

Under the periodicity assumption and condition (9), using (11) N - 1  
times, we obtain 

C ] exp(ikfl)  = exp i ~ | - k:) , 
L J = I  

o r  

i = 1 . . . . .  N (12a) 

N 
k f l = 2 n l i +  ~. |  i =  1 . . . . .  N (12) 

j = l  

where Ii is an arbitrary integer. Thus we can solve the problem under any 
set of  integers {/,}. For every {k;} that satisfy equation (12), we have 
E = ~" ki 2. 

The results obtained above are similar to those for the 6(x) potential 
in some respects. However, there are significant and interesting differences. 

1. Solutions of equation (4) under condition c ~ 0  are different from 
those under c = 0. In particular, when c -~ 0 -  and E < 0, there is a deeply 
bounded state. For positive E and c ~ 0, the wave function can only be 
r = cos(x), different from free particles. Because of all this, even when c 
is quite small, solutions to the Schr6dinger equation can neither be 
neglected nor be obtained using the perturbation method. 

2. Comparing equations (6) and (7) with that of the 6(x) interaction 
(Shastry et al., 1985), we find lie is equivalent to the coupling constant of 
a 6(x) potential. Also, in the case of 6(x), the sign before e i~ is 
negative instead of positive in equation (6). So {I~} are all integers in 
equation (12), while we have half-integers for even numbers of N when 
considering the 6(x) interaction. 
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